LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600034

B.Sc. DEGREE EXAMINATION - MATHEMATICS

FIRST SEMESTER - APRIL 2023
UMT 1501 - ALGEBRA

Date: 06-05-2023
Time: 01:00 PM - 04:00 PM \square Max. : 100 Marks

b)	No equations can have a greater number of negative roots then there are changes of sign in the terms of the polynomial $f(-x)$.		K2	CO1
c)	The number of terms in the binomial expansion of $(x+a)^{n}$ is $n+2$.		K2	CO1
d)	If A and B are similar matrices then they do not have the same characteristic equation.		K2	CO1
e)	If $a \equiv b(\bmod m)$, then $a^{n} \equiv b^{n}(\bmod m)$.		K2	CO1
SECTION B				
Answer any TWO			20 m	ks)
5	Show that the roots of the equation $x^{3}+p x^{2}+q x+r=0$ are in arithmetical progression if $2 p^{3}-9 p q+27 r=0$. Show that the above condition is satisfied by the equation $x^{3}-6 x^{2}+13 x-10=0$.		K3	CO2
6	Determine the transformed equation by diminishing the roots of the equation $x^{4}-5 x^{3}+7 x^{2}-4 x+5=0$ by 2 .		K3	CO 2
7	Interpret the value of the sum the series $1+\frac{1+3}{2!}+\frac{1+3+3^{2}}{3!}+$ $\frac{1+3+3^{2}+3^{3}}{4!}+\ldots \ldots$. to ∞.		K3	CO 2
8	Computer the inverse of the matrix $A=\left[\begin{array}{ccc}2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2\end{array}\right]$ after predicting the characteristics equation.		K3	CO 2
SECTION C				
Answer any TWO $\mathbf{(2 \times 1 0 =}$			20 m	ks)
9	Determine the roots of the equation $x^{3}-9 x^{2}+108=0$ by using cardon's method.		K4	CO3
10	Resolve into partial fraction $\frac{x^{2}-10 x+13}{(x-1)\left(x^{2}-5 x+6\right)}$.		K4	CO 3
11	Verify Cayley Hamilton theorem for the matrix $A=\left[\begin{array}{ccc}8 & -6 & 2 \\ -6 & 7 & -4 \\ 2 & -4 & 3\end{array}\right]$		K4	CO3
12	Examine whether $13^{2 n+1}+9^{2 n+1}$ is divisible by 22 .		K4	CO3
SECTION D				
Answer any ONE (1 $\mathbf{1} 20=$			20	ks)
13	a)	Predict all the roots of the equation $6 x^{6}-35 x^{5}+56 x^{4}-56 x^{2}+35 x-6=0$ (10 marks)	K5	CO4
	b)	Estimate a positive root of the equation $x^{3}-3 x+1=0$ by Horner's method which lies between 1 and 2 , correct to two decimal places. (10 marks)	K5	CO4
14	a)	Determine the eigen values and eigen vectors of the matrix $A=$ $\left[\begin{array}{ccc} -2 & 2 & -3 \\ 2 & 1 & -6 \\ -1 & -2 & 0 \end{array}\right]$	K5	CO4
	b)	i). Estimate the remainder when 2^{46} is divided by 47.	K5	CO4

ii). Justify that $\left(\sum x\right)^{3}-3 \sum x^{3}$ is divisible by 108 only when x, y, z are three consecutive integers.

SECTION E

Answer any ONE
($\mathbf{1} \times 20=20$ marks)

15	a)	Solve the equation $x^{4}+20 x^{3}-143 x^{2}+430 x+462=0$ by removing the second term. (10 marks)	K6	CO5
	b)	If \propto, β, γ are the roots of the equation $x^{3}+p x^{2}+q x+r=0$, find the value of $\left(\alpha^{2}+1\right)\left(\beta^{2}+1\right)\left(\gamma^{2}+1\right)$. (10 marks)	K6	CO5
16		Diagonalise the matrix $\left[\begin{array}{ccc}2 & -2 & 3 \\ 1 & 1 & 1 \\ 1 & 3 & -1\end{array}\right]$.	K6	CO5

